Refine Your Search

Topic

Author

Search Results

Technical Paper

Durability Study on Si-SiC Material for DPF(2)

2004-03-08
2004-01-0951
Among the durability items of the DPF (Diesel Particulate Filter), high accumulated soot mass limit is important for the low fuel consumption and also for the robustness. In case of catalyzed DPF, it depends on the following two properties during soot regeneration. One is the lower maximum-temperature inside of the DPF during usual regeneration in order to preserve the catalyst performance. The other is the higher thermal resistance against the unusual regeneration of excess amount of soot. This paper presents the improvement in the soot mass limit of Si bonded SiC DPF. Maximum-temperature inside of the DPF was lowered by the improvement of thermal conductivity of the material, resulted from the controlling of the microstructure. Additionally the thermal resistance was improved by the surface treatment of the Si and SiC.
Technical Paper

Effect of Cell Shape on Mass Transfer and Pressure Loss

2003-03-03
2003-01-0659
To meet stringent emissions regulations, high conversion efficiency is required. This calls for advanced catalyst substrates with thinner walls and higher cell density. Higher cell density is needed because it brings higher mass transfer from the gas to the substrate wall. Basically, the increase in total surface area (TSA) causes higher mass transfer. However, not only the TSA, but the cell shape also has a great effect on mass transfer. There are two main kinds of substrates. One is the extruded ceramic substrate and the other is the metal foil type substrate. These have different cell shapes due to different manufacturing processes. For the extruded ceramic substrate, it is possible to fabricate various cell shapes such as triangle, hexagon, etc. as well as the square shape. The difference in the cell shape changes not only the mass transfer rate, but also causes pressure loss change. This is an important item to be considered in the substrate design.
Technical Paper

Effect of Cell Structure on Regeneration Failure of Ceramic Honeycomb Diesel Particulate Filter

1987-02-01
870010
In applying ceramic honeycomb wall flow type filters to the after-treatment systems of diesel particulate from engines, the melting and thermal shock failures of ceramic diesel particulate filters (DPF) have been considered as one of the most significant issues during regeneration. This paper gives the results of experiments on the effects of cell structure i.e., wall thickness and cell density, on the melting and thermal shock regeneration failure of DPF and proposes an optimized cell structure for DPF in terms of the regeneration failure and the pressure drop which is also considered to be one of the especially important issues in fuel economy for heavy duty vehicle application.
Technical Paper

Effects of DPF Volume on Thermal Shock Failures during Regeneration

1989-02-01
890173
Application of ceramic honeycomb wall-flow type diesel particulate filters (DPF) to heavy duty vehicles requires a large volume filter. Heavy duty vehicles produce a large volume exhaust gas, and pressure drop in the exhaust system must be maintained to a certain level. In addition, the filters must be designed to resist fracture from thermal stresses during regeneration. This is particularly important in heavy duty vehicles because of these extended mileage requirements. These studies of the effects of DPF volume on thermal shock resistance during regeneration reveal that the maximum failure temperatures are lower as DPF volume is increased, still maintaining 950°C maximum temperature with 12 ℓ volume and 9″D × 12″L size large DPF. Some thermal stress analyses with temperature profiles and finite element analysis were conducted on four different volume DPF during regeneration.
Technical Paper

Electric Heating Regeneration of Large Wall-Flow Type DPF

1991-02-01
910136
Ceramic wall-flow type diesel particulate filters (DPF) are being investigated for the aftertreatment systems of heavy duty engines. To use ceramic DPF more reliably and easily, electric heating regenerations are studied varying combustion air flow rates and amounts of accumulated soot. Despite electric heater capacity limitations, it is possible to regenerate DPF at a certain combustion air flow rate without thermal shock failure. The maximum withstood temperature against thermal shock failure of electric heating regeneration is similar to that of diesel burner regeneration on DPF with a nine inch diameter and a twelve inch length.
Technical Paper

Engine Bench and Vehicle Durability Tests of Si bonded SiC Particulate Filters

2004-03-08
2004-01-0952
Modern filter systems allow a significant reduction of diesel particulate emissions. The new silicon bonded silicon carbide particulate filters (Si-SiC filters) play an important role in this application, because they provide flexibility in terms of mean pore size and porosity and also have a high thermal shock capability to meet both engineering targets and emission limits for 2005 and beyond. Particulate filters are exposed to high temperatures and a harsh chemical environment in the exhaust gas of diesel vehicles. This paper will present further durability evaluation results of the new Si bonded SiC particulate filters which have been collected in engine bench tests and vehicle durability runs. The Si-SiC filters passed both 100 and 200 regeneration cycles under severe ageing conditions and without any problems. The used filters were subjected to a variety of analytical tests. The back pressure and ash distribution were determined. The filter material was also analysed.
Technical Paper

Exhaust Gas Temperature Sensor for OBD-II Catalyst Monitoring

1996-02-01
960333
This paper describes a newly-developed, high-performance RTD,(Resistive Temperature detector), which meets OBD-II monitoring requirements. The OBD-II catalyst monitoring requirements are high temperature durability, high accuracy, and narrow piece-to-piece variation. Catalyst monitoring methods have been reviewed and studied by checking the catalyst exotherm(1)(2). The preliminary test results of catalyst monitoring are also described herein.
Technical Paper

Filtration Behavior of Diesel Particulate Filters (1)

2007-04-16
2007-01-0921
This paper is Part-1 of two papers discussing the filtration behavior of diesel particulate filters. Results of the fundamental study are presented in Part-1, and test results for real size DPFs are reported in the supplement, Part-2. In this paper, a fundamental experimental study was performed on the effect of pore size and pore size distribution on the PM filtration efficiency of the ceramic, wall-flow Diesel Particulate Filter (DPF). Small round plates of various average mean pore sizes (4.6, 9.4, 11.7, 17.7 micro-meters) with a narrow pore size distribution were manufactured for the tests. During the DPF filtration efficiency tests, ZnCl2 particles in the range of 10 nm to 500 nm were used instead of PM from actual diesel engine exhaust. ZnCl2 particles were made using an infrared furnace and separated into monodisperse particles by DMA (Differential Mobility Analyzer).
Technical Paper

Filtration Behavior of Diesel Particulate Filters (2)

2007-04-16
2007-01-0923
Due to its better fuel efficiency and low CO2 emissions, the number of diesel engine vehicles is increasing worldwide. Since they have high Particulate Matter (PM) emissions, tighter emission regulations will be enforced in Europe, the US, and Japan over the coming years. The Diesel Particulate Filter (DPF) has made it possible to meet the tighter regulations and Silicon Carbide and Cordierite DPF's have been applied to various vehicles from passenger cars to heavy-duty trucks. However, it has been reported that nano-size PM has a harmful effect on human health. Therefore, it is desirable that PM regulations should be tightened. This paper will describe the influence of the DPF material characteristics on PM filtration efficiency and emissions levels, in addition to pressure drop.
Technical Paper

Gasoline Particulate Filter with Membrane Technology to Achieve the Tight PN Requirement

2023-04-11
2023-01-0394
The LDV gasoline emission regulation is set to be tightened for Euro7. In particular, the particulate number (PN) requirement has been significantly tightened requiring a GPF with extra - high filtration efficiency to meet the target requirement. In order to meet the stricter PN requirements, GPF substrate material improvement is necessary. However, conventional GPF material improvement for high filtration efficiency will increase the filter backpressure significantly. The relationship between pressure drop and CO2 emission is difficult to quantify but high pressure drop can potentially increase the CO2 emission. Therefore, Membrane Technology (MT) is the key to break through the trade-off between filtration performance and pressure drop. MT is thin and dense layer of small grains applied on the GPF surface. MT application can increase particulate filtration efficiency significantly with minimal pressure drop increase.
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

High Cell Density and Thin Wall Substrate for Higher Conversion Ratio Catalyst

1999-03-01
1999-01-0268
Although air pollution has mitigated since the introduction of exhaust emission regulations, further reduction of it especially in the metropolitan areas is anticipated. An effective way to resolve this issue is to improve the catalyst performance. Of many approaches, improving substrate is one promising way to achieve this goal. Results of applying high cell density and light- weight substrates, coupled with high precious metal content, are discussed theoretically and verified experimentally here. The significant improvements made in the low temperature activity and warmed-up conversions by increasing geometrical surface areas and lowering thermal mass of high cell density substrates are described.
Technical Paper

High Porosity DPF Design for Integrated SCR Functions

2012-04-16
2012-01-0843
Diesel engines are more fuel efficient due to their high thermal efficiency, compared to gasoline engines and therefore, have a higher potential to reduce CO2 emissions. Since diesel engines emit higher amounts of Particulate Matter (PM), DPF systems have been introduced. Today, DPF systems have become a standard technology. Nevertheless, with more stringent NOx emission limits and CO2 targets, additional NOx emission control is needed. For high NOx conversion efficiency, SCR catalysts technology shows high potential. Due to higher temperature at the close coupled position and space restrictions, an integrated SCR concept on the DPFs is preferred. A high SCR catalyst loading will be required to have high conversion efficiency over a wide range of engine operations which causes high pressure for conventional DPF materials.
Technical Paper

High-Porosity Honeycomb Substrate with Thin-Wall and High Cell Density Using for SCR Coating to Meet Worldwide Tighter Emission Regulations

2022-03-29
2022-01-0550
Selective catalyst reduction (SCR) using cordierite honeycomb substrate is generally used as a DeNOx catalyst for diesel engines exhaust in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. Worldwide NOx emission regulations will become stricter, as represented by CARB2027 and EuroVII. Technologies which can achieve further lower NOx emissions are required. Recently, several technologies, like increased SCR catalyst loading amount on honeycomb substrates, and additional SCR catalyst volume in positions closer to the engine are being considered to achieve ultra-low NOx emissions. However, undesirable pressure drop increase and enlarging after treatment systems will be caused by adopting these technologies. Therefore, optimization of the material and honeycomb cell structure for SCR is inevitable to achieve ultra-low NOx emissions, while minimizing any system drawbacks.
Technical Paper

Improvement of Pore Size Distribution of Wall Flow Type Diesel Particulate Filter

1992-02-01
920144
To reduce flow restriction of the wall flow type diesel particulate filters, the pore size distribution of DPF material was improved. Large pore material is preferred to reduce the flow restriction of the DPF. However pore diameter should be controlled within a certain limit to maintain high trapping efficiency against diesel particulates. In order to solve these conflicting matters, the mean pore diameter was enlarged from 13μm of the current material to 20 μm or more, while maintaining the cumulative volume of pores above 100μm within 8% of the total pore volume. The safe limit against thermal shock failure of the improved DPF material having 9″D x 12″/, 12.5/ volume was also determined using diesel burner regeneration system.
Technical Paper

In-line Hydrocarbon (HC) Adsorber System for Cold Start Emissions

1997-02-24
970266
In order to meet the strict automobile emission regulations in the U.S.A. and Europe, new aftertreatment technologies such as the EHC and HC Adsorber have been developed to reduce the cold start emissions. The EHC is obviously effective in reducing emissions, but has the demerits of a large electric power demand and a complicated power control system to support it (13). A by-pass type HC adsorber system has the concerns of unreliable by-pass valves and complicated plumbing (10). A major technical challenge of the in-line type HC adsorber was the difference between the HC desorption temperature and the light-off temperature of the burn-off catalyst. This paper describes the evaluation results of a completely passive “In-line HC Adsorber System” which can reduce the cold start emissions without the application of any type of mechanical or pneumatic control valve in the exhaust system.
Technical Paper

In-line Hydrocarbon Adsorber for Cold Start Emissions - Part II

1998-02-23
980423
The in-line hydrocarbon (HC) adsorber is a passive after-treatment technology to address cold-start hydrocarbons in automotive engine exhaust gas. A major technical challenge of the in-line HC adsorber is the difference between the HC release temperature of the adsorber and the light-off temperature of the burn-off (BO) Catalyst. We call this phenomenon the “reversed-temperature difference”. To reduce the reversed temperature difference, NGK has proposed a new “In-line HC Adsorber System” which consists of light-off (LO) Catalyst + Barrel Zeolite Adsorber (BZA), with a hole through the center, BO Catalyst and secondary air injection management (SAE 970266). This, our latest paper, describes the evaluation of various adsorbents and the effect of the center hole on the Adsorber BZA. The adsorber system, which had the Adsorber BZA with a 25mm ϕ center hole and adsorbent coated, confirmed 30% lower FTP NMHC emission versus a system with no center hole or adsorbent coating.
Technical Paper

Influence of Cell Shape Between Square and Hexagonal Cells

2003-03-03
2003-01-0661
Developing ultra thin wall ceramic substrates is necessary to meet stricter emissions regulations, in part because substrate cell walls need to be thinner in order to improve warm-up and light-off characteristics and lower exhaust system backpressure. However, the thinner the cell wall becomes, the poorer the mechanical and thermal characteristics of the substrate. Furthermore, the conditions under which the ultra thin wall substrates are used are becoming more severe. Therefore both the mechanical and thermal characteristics are becoming important parameters in the design of advanced converter systems. Whereas square cells are used world-wide in conjunction with oxidation and/or three-way catalysts, hexagonal cells, with features promoting a homogeneous catalyst coating layer, have found limited use as a NOx absorber due to its enhanced sulfur desorption capability.
Technical Paper

Influence of Material Properties and Pore Design Parameters on Non-Catalyzed Diesel Particulate Filter Performance with Ash Accumulation

2012-09-10
2012-01-1728
Diesel particulate filters (DPF) are a common component in emission-control systems of modern clean diesel vehicles. Several DPF materials have been used in various applications. Silicone Carbide (SiC) is common for passenger vehicles because of its thermal robustness derived from its high specific gravity and heat conductivity. However, a segmented structure is required to relieve thermal stress due to SiC's higher coefficient of thermal expansion (CTE). Cordierite (Cd) is a popular material for heavy-duty vehicles. Cordierite which has less mass per given volume, exhibits superior light-off performance, and is also adequate for use in larger monolith structures, due to its lower CTE. SiC and cordierite are recognized as the most prevalent DPF materials since the 2000's. The DPF traps not only combustible particles (soot) but also incombustible ash. Ash accumulates in the DPF and remains in the filter until being physically removed.
Technical Paper

Leveraging DOConFilter to Improve Exhaust System Packaging

2024-04-09
2024-01-2131
Diesel Particulate Filters (DPF) made of cordierite are generally used for diesel engine aftertreatment systems in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. PM/PN and NOx emission regulations will become more stringent worldwide, as represented by CARB2027 and Euro7. Technologies that can meet these strict regulations are required. As a result, aftertreatment systems have become more complex with limited space. Recently, off-highway OEMs have been interested in downsizing the aftertreatment system using concepts such as DOConFilter in an effort to reduce the size of the exhaust system. DOConFilter can effectively replace DOC + CSF or DOC + bare DPF systems with a single zone coated particulate filter. DOConFilter systems have an increased amount of coating compared to CSF as higher-filtration filters will become the norm. An undesirable increase in pressure drop is expected by adopting this new technology.
X